Supplementary material: Learning and Selecting Features viaPoint-wise Gated Boltzmann Machines

نویسندگان

  • Kihyuk Sohn
  • Guanyu Zhou
  • Chansoo Lee
  • Honglak Lee
چکیده

There are many classification tasks where we are given a large number of unlabeled examples in addition to only a few labeled training examples. For such scenario, it is important to include unlabeled examples during the training to generalize well to the unseen data, and thus avoid overfitting. Larochelle and Bengio (2008) proposed the semi-supervised training of the discriminative restricted Boltzmann machine by combining the generative objective defined on the unlabeled examples with the discriminative objective. Similarly to their approach, the supervised PGBM can be trained in a semi-supervised learning framework. Specifically, we can use the input data log-likelihood defined on the unlabeled data as a regularizer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning and Selecting Features Jointly with Point-wise Gated Boltzmann Machines

Unsupervised feature learning has emerged as a promising tool in learning representations from unlabeled data. However, it is still challenging to learn useful high-level features when the data contains a significant amount of irrelevant patterns. Although feature selection can be used for such complex data, it may fail when we have to build a learning system from scratch (i.e., starting from t...

متن کامل

Learning Musical Relations using Gated Autoencoders

Music is usually highly structured and it is still an open question how to design models which can successfully learn to recognize and represent musical structure. A fundamental problem is that structurally related patterns can have very distinct appearances, because the structural relationships are often based on transformations of musical material, like chromatic or diatonic transposition, in...

متن کامل

Boltzmann Machines

A Boltzmann Machine is a network of symmetrically connected, neuronlike units that make stochastic decisions about whether to be on or off. Boltzmann machines have a simple learning algorithm that allows them to discover interesting features in datasets composed of binary vectors. The learning algorithm is very slow in networks with many layers of feature detectors, but it can be made much fast...

متن کامل

Classification Factored Gated Restricted Boltzmann Machine

Factored gated restricted Boltzmann machine is a generative model, which capable to extract the transformation from an image pair. We extend this model by adding discriminative component, which allows directly use this model as a classifier, instead of using the hidden unit responses as features for another learning algorithm. To evaluate the capabilities of this model, we have created a synthe...

متن کامل

The exploration of new methods for learning in binary Boltzmann machines

Exact inference for Boltzmann machines is computationally expensive. One approach to improving tractability is to approximate the gradient algorithm. We describe a new way of doing this which is based on Bahadur's representation of the multivariate binary distribution (Bahadur, 1961). We compare the approach, for networks with no unobserved variable, to the \mean eld" approximation of Peterson ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013